
Efficient Estimation of
Influence of a Training Instance

Sosuke Kobayashi Sho Yokoi Jun Suzuki Kentaro Inui

SustaiNLP 2020

Tohoku University
Preferred Networks, Inc.

Tohoku University
RIKEN AIP

Introduction

Goal: estimate the influence of a training instance z
= “how a model prediction or loss would be changed

IF was NOT used for training”

What for?

Interpretability: analyze bad training instances
contributing to error prediction

Data filtering: ignore bad training instances
contributing to high validation error

Introduction

Goal: estimate the influence of a training instance
= “how a model prediction or loss would be changed

IF was NOT used for training”

Naïve approach: leave-one-out retraining: train two
models on two dataset with or without the instance

→ However, computation cost is high…

Our Approach: estimate the influence based on
two dropout sub-networks,
which learned or not

Idea: Dropout Makes Ignorant Sub-networks

A random set of parameters is zero-masked at each update

Insight: the hidden (pruned) sub-network with the zero-
masked parameters does NOT learn the instance
If we deterministically use the same mask for an instance,
its hidden sub-network NEVER learn the instance

Proposed: Turn-Over Dropout

Make instance-specific
dropout masks
for each instance

Train a model with
the instance-specific
masks and dropout

Compare the outputs of the
instance-specific hidden and
exposed sub-networks

instead of

Challenge: Instance-specific Dropout Masks

Random mask for each instance z ∈ D
→ naively, it costs O(|D||θ|) to store…

However, instead of storing it,
we can deterministically generate it from a random seed
(e.g., we can set instance indices as the seeds)
→ reduced to O(1)

Thus,
we can use turn-over dropout with minimum additional costs
on top of the usual training of a single model

Experiment: Hidden Sub-networks Didn’t Learn the
Corresponding Instances? → Actually, Yes!

Dotted: test loss
Solid: training loss

Hidden sub-networks
did NOT overfit to
training dataset
(blue solid)

Exposed sub-networks
did overfit as usual
(red solid) Loss curve when finetuning BERT on SST-2

with turn-over dropout

Experiment: Interpretation of Error Prediction

Analyze training instances with the largest influences for
the misclassified label → we can guess the reason

e.g.

The badly-influential
training instances
share the phrase
“ch ##rist” with
the test instance

Yahoo! Answers question topic classification

Experiment: Interpretation of Error Prediction

Analyze training instances with the largest influences for
the misclassified label → we can guess the reason

e.g.

The badly-influential
training instances
share the similar
visual appearances
(shape, color, layout)
individually

CIFAR-10 object recognition

Experiment: Data Filtering for Domain Adaptation

Remove training instances with the largest negative
influences on validation set
→ retraining on the filtered set is improved

Training set: Movie review (to be filtered)
→ Validation/Test set: Electronics product review

Conclusion

Goal: estimate the influence of a training instance
= “how a model prediction or loss would be changed

IF it was not used for training”

Our Approach: estimate it using dropout as
generator of instance-specific ignorant sub-networks

worked for data filtering and model interpretation

is the most efficient ever (see the paper in detail)

