Efficient Estimation of Influence of a Training Instance

Sosuke Kobayashi Sho Yokoi Jun Suzuki Kentaro Inui
Tohoku University Tohoku University
Preferred Networks, Inc. RIKEN AIP

SustaiNLP 2020
Introduction

• **Goal:** estimate the influence of a training instance z_i = “how a model prediction or loss would be changed IF z_i was NOT used for training”

$$= L(f_{D\backslash\{z_i\}}, z_{target}) - L(f_D, z_{target})$$

• **What for?**

 • **Interpretability:** analyze bad training instances contributing to error prediction

 • **Data filtering:** ignore bad training instances contributing to high validation error
Introduction

• **Goal**: estimate the influence of a training instance z_i = “how a model prediction or loss would be changed IF z_i was NOT used for training”

• **Naïve approach**: leave-one-out retraining: train two models on two dataset with or without the instance z_i → However, computation cost is high...

• **Our Approach**: estimate the influence based on *two dropout sub-networks*, which learned z_i or not
Idea: Dropout Makes Ignorant Sub-networks

- A random set of parameters is zero-masked at each update.

- Insight: the hidden (pruned) sub-network with the zero-masked parameters does NOT learn the instance.
- If we deterministically use the same mask for an instance, its hidden sub-network NEVER learn the instance.
Proposed: Turn-Over Dropout

- Make instance-specific dropout masks for each instance
- Train a model with the instance-specific masks and dropout
- Compare the outputs of the instance-specific hidden and exposed sub-networks

\[L(f^{\tilde{m}(z_i)}_D, z_{\text{target}}) - L(f^{m(z_i)}_D, z_{\text{target}}) \text{ instead of } L(f_{D \setminus \{z_i\}}, z_{\text{target}}) - L(f_D, z_{\text{target}}) \]
Challenge: Instance-specific Dropout Masks

• Random mask for each instance $z \in D$
 \rightarrow naively, it costs $O(|D||\theta|)$ to store...

• However, instead of storing it, we can deterministically generate it from a random seed (e.g., we can set instance indices as the seeds)
 \rightarrow reduced to $O(1)$

Thus, we can use turn-over dropout with minimum additional costs on top of the usual training of a single model
Experiment: Hidden Sub-networks Didn’t Learn the Corresponding Instances? → Actually, Yes!

Dotted: test loss
Solid: training loss

- Hidden sub-networks did NOT overfit to training dataset (blue solid)
- Exposed sub-networks did overfit as usual (red solid)

Loss curve when finetuning BERT on SST-2 with turn-over dropout

Test loss of f_D with $m(z_{train})$
Test loss of f_D with $\tilde{m}(z_{train})$
Train loss of f_D with $m(z_{train})$
Train loss of f_D with $\tilde{m}(z_{train})$
Experiment: Interpretation of Error Prediction

- Analyze training instances with the largest influences for the misclassified label → we can guess the reason

 e.g.

- The badly-influential training instances share the phrase “ch ##rist” with the test instance

Test input:
- why do some people assume they know who the ask ##er is , based on the question he asks ? from reading back the answers that i get on my questions , i am now officially a m ##us ##lim - ch ##rist ##ian - b ##udd ##his ##t , a straight … it ok with you that i still don ' t have an identity - crisis ?

 [Society & Culture → Business & Finance]

Influentials:
- is ch ##rist ##mas eve in the evening or is it just the day before ch ##rist ##mas ? my sister thinks that ch ##rist ##mas eve …
- how i can be ch ##rist ##ain ? i want to be real ch ##rist ##ain , how i can be ch ##rist ##ain ask ch ##rist into …

Yahoo! Answers question topic classification
Experiment: Interpretation of Error Prediction

- Analyze training instances with the largest influences for the misclassified label → we can guess the reason

 e.g.

- The badly-influential training instances share the similar visual appearances (shape, color, layout) individually

CIFAR-10 object recognition
Experiment: Data Filtering for Domain Adaptation

- Remove training instances with the largest negative influences on validation set
 → retraining on the filtered set is improved

<table>
<thead>
<tr>
<th></th>
<th>Accuracy (%)</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Random Removal</td>
<td>76.8 ± 1.1</td>
<td>0.521 ± 0.030</td>
</tr>
<tr>
<td>No Cleansing</td>
<td>77.0 ± 0.9</td>
<td>0.536 ± 0.063</td>
</tr>
<tr>
<td>1% Cleansing</td>
<td>78.3 ± 0.2</td>
<td>0.484 ± 0.008</td>
</tr>
</tbody>
</table>

Training set: Movie review (to be filtered)
→ Validation/Test set: Electronics product review
Conclusion

- **Goal**: estimate the influence of a training instance = “how a model prediction or loss would be changed IF it was not used for training”

- **Our Approach**: estimate it using dropout as generator of instance-specific ignorant sub-networks
 - worked for data filtering and model interpretation
 - is the most efficient ever (see the paper in detail)