Efficient Estimation of Influence of a Training Instance

Sosuke KobayashiSho YokoiJun SuzukiKentaro InuiTohoku UniversityTohoku UniversityPreferred Networks, Inc.RIKEN AIP

SustaiNLP 2020

Introduction

- **Goal**: estimate the influence of a training instance z_i
 - = "how a model prediction or loss would be changed IF z_i was NOT used for training"

$$= L(f_{D \setminus \{z_i\}}, z_{\text{target}}) - L(f_D, z_{\text{target}})$$

- What for?
 - **Interpretability**: analyze bad training instances contributing to error prediction
 - **Data filtering**: ignore bad training instances contributing to high validation error

Introduction

- **Goal**: estimate the influence of a training instance z_i = "how a model prediction or loss would be changed IF z_i was NOT used for training"
- Naïve approach: leave-one-out retraining: train two models on two dataset with or without the instance z_i \rightarrow However, computation cost is high...
- **Our Approach**: estimate the influence based on *two dropout sub-networks*, which learned z_i or not

Idea: Dropout Makes Ignorant Sub-networks

• A random set of parameters is zero-masked at each update

- Insight: the hidden (pruned) sub-network with the zeromasked parameters does NOT learn the instance
- If we *deterministically* use the same mask for an instance, its hidden sub-network NEVER learn the instance

Proposed: Turn-Over Dropout

- Make instance-specific dropout masks for each instance
- Train a model with the instance-specific masks and dropout

 $L(f_D^{\widetilde{\boldsymbol{m}}(\boldsymbol{z}_i)}, \boldsymbol{z}_{\mathrm{target}}) - L(f_D^{\boldsymbol{m}(\boldsymbol{z}_i)}, \boldsymbol{z}_{\mathrm{target}})$ instead of $L(f_{D \setminus \{\boldsymbol{z}_i\}}, \boldsymbol{z}_{\mathrm{target}}) - L(f_D, \boldsymbol{z}_{\mathrm{target}})$

Challenge: Instance-specific Dropout Masks

- Random mask for each instance $z \in D$ \rightarrow naively, it costs O(|D|| θ |) to store...
- However, instead of storing it, we can deterministically generate it from a random seed (e.g., we can set instance indices as the seeds)
 → reduced to O(1)

Thus,

we can use turn-over dropout with minimum additional costs on top of the usual training of a single model

Experiment: Hidden Sub-networks Didn't Learn the Corresponding Instances? \rightarrow Actually, Yes!

Experiment: Interpretation of Error Prediction

• Analyze training instances with the largest influences for the misclassified label \rightarrow we can guess the reason

e.g.

 The badly-influential training instances share the phrase "ch ##rist" with the test instance Test input:

- why do some people assume they know who the ask ##er is , based on the question he asks ? from reading back the answers that i get on my questions , i am now officially a m ##us ##lim - ch ##rist ##ian - b ##udd ##his ##t , a straight ... it ok with you that i still don ' t have an identity - crisis ?

```
[Society & Culture → Business & Finance]
```

Influentials:

- is ch ##rist ##mas eve in the evening or is it just the day before ch
##rist ##mas ? my sister thinks that ch ##rist ##mas eve ...

- how i can be ch ##rist ##ain ? i want to be real ch ##rist ##ain , how i can be ch ##rist ##ain ask ch ##rist into ...

Yahoo! Answers question topic classification

Experiment: Interpretation of Error Prediction

• Analyze training instances with the largest influences for the misclassified label \rightarrow we can guess the reason

e.g.

 The badly-influential training instances share the similar visual appearances (shape, color, layout) individually

CIFAR-10 object recognition

Experiment: Data Filtering for Domain Adaptation

- Remove training instances with the largest negative influences on validation set
 - \rightarrow retraining on the filtered set is improved

	Accuracy (%)	Loss
1% Random Removal	76.8 ± 1.1	0.521 ± 0.030
No Cleansing	77.0 ± 0.9	0.536 ± 0.063
1% Cleansing	$\textbf{78.3} \pm \textbf{0.2}$	$\textbf{0.484} \pm \textbf{0.008}$

Training set: Movie review (to be filtered) \rightarrow Validation/Test set: Electronics product review

Conclusion

- Goal: estimate the influence of a training instance
 = "how a model prediction or loss would be changed IF it was not used for training"
- **Our Approach**: estimate it using dropout as generator of instance-specific ignorant sub-networks
 - worked for data filtering and model interpretation
 - is the most efficient ever (see the paper in detail)